Kinetics of *mer* to *fac* Isomerisation of Diethylenetriamine in Some Octahedral Cobalt(III) Complexes

D. A. HOUSE

Department of Chemistry, University of Canterbury, Christchurch, New Zealand Received February 21, 1978

The trans-Co(dien)(A)(OH₂)₂³⁺ cations (A = OH₂, NH₃ pyridine, benzylamine, cyclohexylmethylamine and cyclohexylamine) have been generated in aqueous acidic solution (0.95 M HNO₃) by the Hg^{2+} (0.02 M $Hg(NO_3)_2$) assisted chloride release from the trans-[CoCl₂(dien)(A)] ClO₄ salts. Rates of mer to fac isomerisation have been measured spectrophotometrically in this medium ($\mu = 1.0$ M) over a 15 K temperature range. At 298.2 K, the kinetic parameters for the isomerisation, in the order $10^4 k_{isom}$ (298.2) (s⁻¹), E_a (kJ mol⁻¹), and $\Delta S_{298}^{\#}$ (J K⁻¹ mol⁻¹) for the above A groups, respectively, are: 2.47, 108.7, +42.3; 16.2, 100.0, +29; 4.65, 116.3, +73; 13.7, 95.8, +13.5; 25.3, 92.7, +8; and 46.0, 96.3, +25. The rate of mer \rightarrow fac isomerisation of Co(dien)(OH₂)³⁺ in $HClO_4$ is accelerated by NO_3^- ions and at 313.2 K $(\mu = 1.0 \text{ M}) k_{obs} = k_1 + k_2[NO_3]$ where $k_1 = 3.1 \times 10^{-4} \text{ s}^{-1}$ and $k_2 = 17.1 \times 10^{-4} \text{ M}^{-1} \text{ s}^{-1}$. Rates of mer to fac dien isomerisation have also been measured $(\mu = 1.0 \text{ M}, 0.95 \text{ M} HClO_4, 0.02 \text{ M} Hg(NO_3)_2)$ for the mer-Co(AA)(dien)(OH₂)³⁺ (AA = (NH₃)₂, tmd, pn) cations. Kinetic parameters, in the order $10^7 k_{isom}$ (298.2), E_a , ΔS_{298}^{\dagger} (units as above) are: 9.7, 115, +17; 71.7, 105, -1; and 1.7, 126, +39 respectively. The increase in the rate of isomerisation of trans-Co(dien)- $(NH_3)(OH_2)_2^{3+}$ relative to mer-Co(dien) $(NH_3)_2(OH_2)^{3+}$ is reflected mainly in a decrease in activation energy.

Introduction

Diethylenetriamine is a tridentate polyamine ligand that can form two fused five-membered chelate rings on coordination with a transition metal ion. In an octahedral complex, *e.g.* with Co(III), the ligand can adopt either the meridional or facial configuration [1]. The reasons for the adoption of a particular configuration are not yet established — aniono ligands, *e.g.* NO_2^- , N_3^- or CI^- in the other three octahedral sites appear to favour the *mer*- configuration [2–4] while neutral ligands such as dien [5] or H₂O [4] can adopt either arrangement. As a consequence, *mer* to *fac* aqua isomerisation is often observed when the aniono ligands are rapidly removed [6–9]. We have prepared a series of *trans*-CoCl₂(dien)(A)⁺ complexes (A = NH₃ [9], py, BzNH₂, cyclohexNH₂, cyclohexCH₂NH₂) [10] which rapidly produce the *trans*-Co(dien)(A)(OH₂)₂³⁺ ions by removal of the coordinated Cl⁻ in acidic solution with Hg²⁺. The rate of *mer* \rightarrow *fac* isomerisation can then be measured spectrophotometrically.

An additional, but related series of *mer*-CoCl(dien)- $(AA)^{2+}$ complexes $(AA = (NH_3)_2 [11]$, en [12], pn [13], tmd [14, 15]) have also been prepared and a similar generation of the *mer*-Co(dien)(AA)(OH₂)³⁺ ions allows the *mer* \rightarrow *fac* isomerisation rate to be measured.

Perhaps the most significant observation is that mer-Co(dien)(NH₃)₂(OH₂)³⁺ isomerises about 1000 times more slowly than the *trans*-Co(dien)(NH₃)-(OH₂)₂³⁺ ion.

Experimental

The commercially available amines were used without further purification. All other chemicals were the best reagent grade. Acid concentrations of solutions used for kinetic runs were determined by titration with standard alkali. The $Hg(NO_3)_2$ concentration was calculated from weighed amounts of the monohydrate. $CoCl_3(dien)$ and *trans*- $[CoCl_2(dien)-(NH_3)]$ ClO₄ were prepared by the literature methods [4, 9, 16, 17].

CAUTION: Although we have experienced no difficulties with the perchlorate salts of the complexes mentioned herein, these compounds should be treated as potentially explosive and handled with care.

trans-(Amine) (diethylenetriamine) (dichloro) cobalt-(III) Perchlorate: trans- $(CoCl_2(dien)(A))$ ClO₄

These complexes, together with fac-[CoCl(dien)-(A)₂]ZnCl₄, are isolated from the work-up of the reaction between *mer*-CoCl₃(dien) and 2.5 mol of the amine in water or aqueous methanol. Thus, 10 g of CoCl₃(dien) was slurried with 10 ml of water and 7.5 ml of pyridine added. The mixture was heated at 80 °C (bunsen) for 5–10 min until all the solid dissolved and a reddish purple solution formed. Addi-

A (or AA)	F.W. (calc.)	%Cl (calc.)	%Cl (found) ^b	Isosbestic (± 2 nm)	Points	
C1	268.5	39.7	39.5		498 ^c 498	585 [°] 587
NH ₃	350	20.3	20.0	376 ^d 376	468 ^d 466	564 ^d 562
py 3.5-lut ^f	383.5 ^e 440 ^g	27.7 16.1	27.8 15.9		465	564
BzNH ₂ cyclohexNH ₂ ^h	476 ^g 468 ^g	14.9 15.2	15.1 15.3	384	455	552
cyclohex CH_2NH_2 (NH ₃) ₂ ⁱ	482 ^g 439	14.7 40.4	14.5 40.2	373	464 502	555 565
pn ^h tmd ^h	477 477	37.2 37.2	37.0 37.1			

TABLE I. Analytical Data for trans [CoCl₂(dien)(A)] ClO₄ and mer-[CoCl(dien)(AA)] ZnCl₄ Salts and Isosbestic Points Observed in the Isomerisation of the Corresponding Aqua lons.^a

^aThis research unless noted otherwise. ^bNon-perchlorate chloride determined gravimetrically as AgCl. ^cReference 6. ^dM. C. Couldwell, *Ph.D. Thesis*, University of Canterbury, Christchurch, New Zealand (1973). ^eAs the chloride dihydrate salt. ^fNot used for rate studies. ^gAs the dihydrate. ^hIsosbestic points not determined. ⁱVisible absorption spectral parameters (0.1 *M* HCl): $\lambda(nm), \in (M^{-1} \text{ cm}^{-1})$: 530sh, 58.5; 476 max, 75.1; 418 min, 32.5; 370 max, 71.8; 333 min, 39.6.

A	λ (max)	λ(min)	λ (max)	λ (min)	λ (max)	λ (min)
NH ₃	620	550	460		430sh	395
	(40.9)	(22.4)	(80.3)		(76.4)	(56.3)
NH ₃ ^a	617 (40.5)	545 (15.7)	460sh		4 35 (77.5)	376 (44.3)
BzNH ₂	625 (43.9)	552 (20.2)	465sh (97.4)		430 (101)	378 (51.0)
cyclohexNH ₂	627 (40.7)	565 (21.0)	470 (102)		435sh (99)	400 (75.7)
cyclohexCH ₂ NH ₂	625 (33.5)	568 (22.6)	470 (111)			410 (73.6)
ру	622 (41.7)	550 (15.2)	462 (92.0)	450 (91.4)	430 (93.1)	378 (50.0)
3,5-lut	622 (41.5)	552 (15.8)	465 (96.0)	448 (95.2)	435 (95.4)	395 (70.7)

TABLE II. Visible Absorption Spectra of some trans-CoCl₂(dien)(A)⁺ Complexes in 3M HCl at 22-24 °C.

^aln 0.3 M HNO₃ (reference 9).

tion of HCl (25 ml, 12 *M*) to the hot solution and cooling, caused the precipitation of *trans*-[CoCl₂-(dien)(py)] Cl·2H₂O (1.5 g). This was filtered from the red solution and washed with 2-propanol and ether. The mother liquor was warmed to 60 °C and the addition of ZnCl₂ (15 g) resulted in red crystals (10 g) of *fac*-[CoCl(dien)(py)₂]ZnCl₄, slightly contaminated with further amounts of the green *trans*-dichloro. The red salt was purified by recrystallisation from dilute HCl, followed by conc. HCl containing ZnCl₂. 3,5-lutidine behaved similarly, but the perchlorate salt of the *trans*-dichloro was isolated by the addition of HClO₄ to the mother liquor after recrystallisation from dilute function from the initially formed red-green mixture

and removal of fac-[CoCl(dien)(3,5-lut)₂]ZnCl₄. The other amines did not form crystalline chlorides after the initial addition of HCl to the reaction mixture, but red fac-[CoCl(dien)(A)₂]ZnCl₄ salts were obtained by the addition of ZnCl₂. Addition of HClO₄ to the mother liquor resulted in the precipitation of the *trans*-dichloro perchlorate salts. These green products were recrystallised by gentle warming with 0.1 *M* NaOH until all the solid dissolves (too much heating results in amine loss), followed by the addition of conc. HCl and HClO₄. Analytical data are presented in Table I. Visible absorption spectral parameters were determined in 3 *M* HCl (Table II) to prevent the formation of chloroaqua ions.

A	Configuration	λ (max)	λ (max)	λ (min)	λ (max)	λ (min)
	mer ^c	536sh	453	406	380	
5		(33.5)	(83.1)	(58.7)	(61.6)	
	$fac^{a,c}$		496	418	357	
			(92.1)	(25.1)	(71.6)	
BzNH ₂	mer	520sh	485	444	390sh	
-		(70.8)	(78.9)	(59.3)	(97.1)	
	fac ^a		502	424	370sh	
	-		(121)	(32.2)	(97.3)	
cyclohexNH ₂	mer		490	428		
•			(91.0)	(58.4)		
	fac ^a		500	422	350	335
			(118)	(36.2)	(190)	(184)
cyclohexCH ₂ NH ₂	mer		472	420		
			(98)	(65.7)		
	fac ^a		490	418		
	-		(120)	(38.5)		
ру	mer	570sh	465	425	395sh	
		(36.2)	(88.1)	(70.8)	(80.6)	
	fac ^a		498	415	360	335
			(122)	(23.9)	(85.8)	(67.6)
3,5-lut	mer		477	420		
			(83.5)	(54.4)		
	fac ^a		500	415	355sh	
	·		(119)	(19.9)	(105)	

TABLE III. Visible Absorption Spectral Parameters for some mer and fac^{a} Co(dien)(A)(OH₂)²⁺₂ Complexes.^b

^aSpectral parameters cited for the *fac* isomer are in fact those for the *mer* \Rightarrow *fac* equilibrium mixture (see text). HClO₄, 0.012 *M* Hg(NO₃)₂, the dichloro perchlorate salts were dissolved in 10 ml of water before diluting to 25.0 ml with 1.0 *M* HClO₄, 0.02 *M* Hg(NO₃)₂. ^cIn 1.0 *M* HNO₃ (reference 9).

Kinetics

Small quantities of the trans-dichloro salts (or mer-CoCl₃(dien)) were dissolved in 0.95 M HNO₃ containing 0.02 M Hg(NO₃)₂ to produce the transdiaqua ions. The orange solutions (visible absorption spectral parameters in Table III) were transferred to a jacketed 5.0 cm spectrophotometer cell and after 1-2 min (for thermal equilibrium) the fixed wavelength or repeat scan modes were initiated. Similar techniques were used for the mer-Co(dien)- $(AA)(OH_2)^{3+}$ ions except that 0.95 M HClO₄ containing 0.02 M Hg(NO₃)₂ was used as the reaction medium. The effect of nitrate ion on the mer \rightarrow fac $Co(dien)(OH_2)_3^{3+}$ isomerisation was investigated in a series of HNO₃/HClO₄, [H⁺] = 1.0 M, $\mu \sim 1.0$ M solutions containing $\sim 0.02 M \text{ Hg}(\text{NO}_3)_2$. The total [NO3] was determined spectrophotometrically at 300 mn using a value of 5.5 M^{-1} cm⁻¹ for the molar absorptivity of NO_3 [18]. In 0.2 cm cells, the maximum absorbance was 1.10.

First order rate constants were calculated from the absorbance νs . time data using the previously described methods [7] and from the variation of k_{isom} with temperature, the activation parameters were calculated [19].

Results

Preliminary investigations on the mer \rightarrow fac isomerisation of the trans-Co(dien)(NH₃)(OH₂) $_{2}^{3+}$ ion showed that the value of the observed rate constant was dependent upon hydrogen ion concentration and ionic strength. Similar observations had also been made for the mer \rightarrow fac isomerisation of mer-Co(dien) $(OH_2)_3^{3+}$ [6]. To avoid these complications, the aqua ions were generated from the chloro precursors by Hg^{2+} assisted (0.02 M as $Hg(NO_3)_2$) chloride ion release in 0.95 M H⁺ at $\mu = 1.0$ M, rather than by ion exchange, base hydrolysis and acidification [9]. HNO₃ was used as the medium for the diaqua ions, as the parent dichloro perchlorate salts were only slowly soluble in HClO₄ containing Hg²⁺. The latter medium was quite satisfactory for the mono-aqua ions as chloro tetrachlorozincate(II) salts were used as starting materials. In the appropriate medium, the chloride release reaction was complete within the time of dissolution, mixing, transference to the spectrophotometer cell and temperature equilibrium (2-5 min).

The visible absorption spectra of the *trans*-Co- $(dien)(NH_3)(OH_2)_2^{3+}$ ion generated in this manner (Table III) was identical with that produced from the

T°C [K]/A	OH ₂	ру	BzNH ₂	NH ₃	cyclohexCH ₂ NH ₂	cyclohexNH ₂
14.9 [288.1] calc. ^b		0.902 ± 0.05 0.899		3.93 ± 0.07 3.94	6.82 ± 0.05 6.81	11.8 ± 0.1 11.8
20.0 [293.2] calc. ^b			7.15 ± 0.2 7.13	8.18 ± 0.04 8.14	13.5 ± 0.2 13.4	23.9 ± 0.4 23.7
25.0 [298.2] cale. ^b	2.49 ± 0.05 2.47	4.69 ± 0.03 4.65	13.8 ± 0.7 13.7	16.2 ± 0.6 16.2	24.9 ± 1.0 ^c 25.3	45.6 ± 0.2 ^c 46.0
27.0 [300.2] calc. ^b	3.31 ± 0.02^{c} 3.32	$6.30 \pm 0.16^{\circ}$ 6.36	17.7 ± 1.1 17.8	20.9 ± 0.5 21.2	33.3 ± 0.8 32.5	60.6 ± 1.3 59.7
30.0 [303.2] calc. ^b			26.0 ± 0.3 26.0	32.1 ± 0.6 31.5		
33.0 [306.2] calc. ^b			38.1 ± 0.9 37.8	46.2 ± 0.8 46.5		
35.0 [308.2] calc. ^b	10.3 ± 0.4 10.3	21.5 ± 0.6 21.3				
40.0 [313.2] calc. ^b	$20.2 \pm 0.2^{\mathbf{d}}$ 20.2					

TABLE IV. Pseudo-first-order Rate Constants (10⁴ k_{isom}, s⁻¹) for the mer \rightarrow fac Isomerisation of Some trans-Co(dien)(A)(OH₂)₂³⁺ Complexes at $\mu = 1.0 M$.^a

^aIn 0.95 *M* HNO₃, 0.02 *M* Hg(NO₃)₂ Values quoted are the mean ± the standard deviation of 10-12 point-by-point calculations, for each run, spanning at least two half lives. duplicate determinations. ^bCalculated from the kinetic parameters cited in Table VI. ^cMeans from dIn 0.95 *M* HClO₄, 0.02 *M* Hg(NO₃)₂, 10⁴ k_{isom} = (3.9 ± 0.09) s⁻¹, see Table VII.

TABLE V. Pseudo-first-order Rate Constants $(10^5 \text{ k}_{\text{isom}}, \text{s}^{-1})$ for the *mer* \rightarrow *fuc* lsomerisation of Some Co(OH₂)(dien)-(AA)³⁴ Complexes at $\mu = 1.0 M$.^a

AA	Configuration	Т°С [К]	$\frac{10^{5} k_{obs}}{(s^{-1}) \pm 5\%}$	$\frac{10^5 k_{calc}}{(s^{-1})} k_{calc}$
$(NH_3)_2$	a,bf,cde	65.4	27.0	24.4
		[338.6]		
		72.3	49.7	55.1
		[345.5]		
			51.0	
		76.2	82.1	86.1
		[349.4]		
		79.5	128	125
		[352.7]		
			138	
pn	a,fb,cde	69.6	12.1	12.4
		[342.8]		
		74.9	25.1	24.4
		[348.1]		
		79.8	45.7	44.6
		[353.0]		
		85.0	81.0	83.2
		[358.2]		
tmd	a,bf,cde	46.2	11.9	11.8
		[319.4]		
		54.1	30.1	30.6
		[327.3]		
		58.6	51.6	51.6
		[331.8]		
			52.0	51.6
		60.5	64.2	64.0
		[333.7]		

^aln 0.95 M HClO₄, 0.02 M Hg(NO₃)₂. the kinetic parameters cited in Table V1. ^bCalculated from

dichloro by base hydrolysis and acidification [9]. Spectrophotometric scans showed sharp isosbestic points (Table I) and the final spectrum (Table III) corresponded to that found previously [9] for a *mer-fac* equilibrium mixture of $83 \pm 4\%$ fac-diaqua. The other diaqua ions behaved similarly but no attempt was made to establish the final position of equilibrium.

The mono-aqua mer-Co(dien)(AA)(OH₂)³⁺ ions isomerised much more slowly, but good isosbestic points (Table I) were also observed in the spectral scans, and the final absorption spectra corresponded well to those produced by Hg²⁺ assisted aquation from the predicted fac-CoCl(dien)(AA)²⁺ isomers.*

Tables IV and V present the pseudo-first-order rate constants observed under the cited conditions. The variation in rate constant with temperature has allowed us to calculate [19] activation parameters (Table VI) associated with these reactions.

While changes in the medium (ionic strength and counter ion) do not significantly change the activation energy calculated for the isomerisation of *mer*-Co(dien)(OH₂)₃³⁺ (Table VI), the value of k_{isom} (obs) is certainly dependent on these conditions. Wilairat and Garner [6] have shown that a change in ionic strength (μ) from 3.5 *M* to 0.7 *M* (NaClO₄) results in a rate increase of 1.3 for this reaction. The

^{*}There are two possible fac-CoCl(dien)(AA)²⁺ isomers. The ones produced from the *mer*-Co(dien)(AA)(OH₂)³⁺ isomerisation are predicted (and found) to have configuration I in Figure 1.

TABLE VI. Kinetic Parameters for the Rate of mer to fac Isomerisation of Some mer-Co(dien)(A)(AA)³⁺ Complexes at 298.2 K ($\mu = 1.0 M$).

A	AA (configuration)	k _{isom} (298.2) (s ⁻¹)	log PZ (s ⁻¹)	E _a (kJ mol ⁻¹)	$\Delta S_{298}^{\#}$ (J K ⁻¹ mol ⁻¹)	Reference
OH ₂	(OH ₂) ₂	3.37×10^{-5}	14.6	108 ± 3	+26 ± 12	a
		2.47×10^{-4}	15.440	109 ± 0.2	$+42.3 \pm 0.4$	b
NH ₃	$(OH_2)_2$	1.62×10^{-3}	14.736	100 ± 0.6	$+29 \pm 2$	b
BzNH ₂	$(OH_2)_2$	1.37×10^{-3}	13.937	95.8 ± 0.5	$+13.5 \pm 1$	b
cyclohexCH ₂ NH ₂	$(OH_2)_2$	2.53×10^{-3}	13.656	92.7 ± 1.5	+8 ± 3	ъ
cyclohexNH ₂	$(OH_2)_2$	4.60×10^{-3}	14.536	96.3 ± 1.0	$+25 \pm 2$	b
ру	$(OH_2)_2$	4.65 × 10 ⁻⁴	17.039	116 ± 0.6	$+73 \pm 2$	b
OH ₂	en (K)	1.22×10^{-7}	14.861	124 ± 3	$+31 \pm 6$	c, f
OH ₂	pn (B)	1.67×10^{-7}	15.295	126 ± 3	+39 ± 6	d,g
OH ₂	(NH ₃) ₂ (K)	9.70×10^{-7}	14.109	115 ± 8	$+17 \pm 16$	d, f
OH ₂	Metnid (I')	15.1×10^{-7}	15.178	120 ± 6	+37 ± 12	e,g
OH ₂	Metmd (II')	11.2×10^{-7}	9.96	91 ± 5	-63 ± 10	e , f
OH ₂	tmd (a)	71.7×10^{-7}	13.191	105 ± 1	-1 ± 2	d, f, h
trans-Co(en) ₂ (OH ₂) ₂ ³⁺						
$\rightarrow cis$		7.0×10^{-6}		107.3 ± 0.5	$+8 \pm 1$	i
trans-Co(en) ₂ (NII ₃)-						
$(OH_2)^{3+} \rightarrow cis$		1.66×10^{-8}		145 ± 2	$+84 \pm 4$	j

^aReference 6, limiting values for the acid independent path at $\mu = 3.5 M$ (NaClO₄). ^bThis research in 0.95 M HNO₃, 0.02 M Hg(NO₃)2. ^cReference 7, in 0.76 M HClO₄, 0.24 M NaClO₄. ^dThis research in 0.95 M HClO₄, 0.02 M Hg(NO₃)₂. ^eReference 34, in 0.95 M HClO₄, 0.02 M Hg(NO₃)₂. ^fThe a,bf,cde-(H₄)- isomer, reference 34. ^gThe a,fb,cde-(H₄)- isomer, reference 27, limiting values for the acid independent path at $\mu = 0.1 M$ (NaClO₄).

TABLE VII. Effect of $[NO_3^-]$ on the mer to fac Isomerisation of mer-Co(dien)(OH₂)³⁺ at 40 °C.^a

[NO ₃] ^b (<i>M</i>)	$\frac{10^4}{(s^{-1})} k_{isom} (obs)^c$	$\frac{10^4 \text{ k}_{\text{isom}}(\text{calc.})^{\text{d}}}{(\text{s}^{-1})}$
1.0	20.2 ± 0.2	20.2
0.81	17.2 ± 0.2	17.0
0.63	13.7 ± 0.3	13.9
0.54	13.0 ± 0.4	12.3
0.41	10.5 ± 0.1	10.1
0.22	7.1 ± 0.1	6.9
0.06	3.9 ± 0.1	4.1
0.00	3.5 ± 0.1^{e}	3.1

^a[H⁺] = 1.0 M, $\mu \sim 1.0 M$, Hg²⁺ $\sim 0.02 M$. ^b[NO₃] determined spectrophotometrically at 300 nm ($\epsilon_{max} = 5.5 M^{-1}$ cm⁻¹) ± 5%. ^cMean of at least two determinations. ^dCalculated from the equation $k_{obs} = k_1 + k_2$ [NO₃] where $k_1 = 3.1 \times 10^{-4} s^{-1}$ and $k_2 = 17.1 \times 10^{-4} M^{-1} s^{-1}$. ^eReference 6, [H⁺] = 1.061 M (HClO₄), $\mu = 3.5 M$ (NaClO₄).

change in counter ion is also significant and using HNO_3 as a medium results in an increase in k_{isom} (obs) of 5 times that observed in $HCIO_4$ (Table IV, footnote d). This effect has been further investigated (Table VII) and the observed rate constant at 313.2 K can be expressed as

 $k_{obs} = k_1 + k_2 [NO_3^-]$

Figure 1. Possible isomers of fac-CoCl(dien)(AA)²⁺.

Figure 2. Relationships between trans-Co(en)₂(OH₂)₂³⁺, trans-Co(en)₂(NH₃)(OH₂)³⁺, mer-Co(dien)(NH₃)(OH₂)₂⁴⁺ and mer-(H₄)-Co(dien)(NH₃)₂(OH₂)³⁺. Values of 10⁸ k_{isom}(298)(s⁻¹) are in parenthesis and values of E_a (kJ mol⁻¹) in square brackets.

where the values of k_1 and k_2 are given in footnote d of Table VII.

This suggests that the NO_3^- ion directly participates in the reaction according to the equations move into a facial arrangement in a five-coordinate transition state. The strain is best illustrated in the "square-planar" $NH_2-NH-NH_2$ angle of 95.7 ± 0.4° compared with the unstrained value of 90.0° [31].

where R = Co(dien) and $k_2 = k'_1K_m$. If $K_m \sim 9 \times 10^{-2}$ [21], then $k'_1 \sim 200 \times 10^{-4} \text{ s}^{-1}$ at 313.2 K, however, this is about 10 times faster than the aquation of Co(NO₃)(NH₃)²⁺ [22] or *cis*-Co(NO₃)(NH₃)₄-(OH₂)²⁺ [23].

Discussion

Trans to cis isomerisation in $Co(en)_2(A)(B)^{3+}$ systems are reasonably well studied reactions, where $A = B = OH_2$ [24-26] or $A = NH_3$, $B = OH_2$ [27, 28] and while Basolo and Pearson [29] comment on the possible mechanistic differences between the two systems, we feel that the 400 times difference in rate (Table VI and Figure 2) warrants further discussion. Figure 2 shows the relationship between these *trans*bis(ethylenediamine) complexes and the *mer*-(dien)-(NH₃) systems studied here.

Assuming a water exchange mechanism and constant solvation effects (all have +3 ionic charge and similar activation entropies) the rates of isomerisation probably reflect the ease of dissociation of the leaving group (H₂O). This in turn is related to (i) the group in the *trans* position and (ii) the type of chelate ring system ((dien)(NH₃) or (en)₂) present.

For a constant chelate ring system, the *trans* labilising effect on the aqua ligand is $OH_2 \ge NH_3$ as illustrated in Figure 2 and a decrease of 15-30 kJ mol⁻¹ in activation energy is observed in changing the *trans* donor atom from N (NH₃) to O (H₂O). It is tempting to attribute this effect to differences in polarisation ("hardness" [30]) of the two donor atoms, but the range of atoms is very limited.

With the constant donor atom systems, those complexes with the meridional (dien)(NH₃) chelate rings isomerise more rapidly than those with the *trans* (en)₂ system. (A decrease of 7–30 kJ mol⁻¹ in activation energy is observed, Figure 2). We have argued previously [21] that, in terms of reactivity, ease of distortion of the non-replaced polyamine ligands in octahedral cobalt(III) complexes is important in forming a trigonal bipyramid transition state. In this present situation, the meridional dien ligand is in a strained configuration and is nicely poised to The rates of isomerisation of several *mer*-Co(dien)-(A)(OH₂)₂³⁺ complexes show some variation with A (Table VI), with values of $k_{isom}(298)$ increasing in the order A = OH₂ py, BzNH₂, NH₃, cyclohexCH₂-NH₂, cyclohexNH₂ This order in isomerisation rate is about the same as that for the effect of A on the rate of chloride release for *cis*-CoCl(en)₂(A)²⁺ complexes [21] and is probably electronic rather than steric in origin, although the two effects are difficult to separate.

In the pentaamine series, the rates of $mer \rightarrow fac$ dien isomerisation are in the order en $< pn < (NH_3)_2$ < Metmd < tmd which is just as would be predicted from the "distortion" theory [15, 32] with due regard for the effects of C-methyl [33] and N-methyl

[34] substitution.

Acknowledgements

We thank the Universities Grants Committee for providing funds to purchase instruments used in this work, and to the Ministry of Labour for funds to support Miss Philippa Drayton as a technical assistant.

References

- 1 A. R. Gainsford, D. A. House and W. T. Robinson, *Inorg. Chim. Acta*, 5, 595 (1971).
- 2 Y. Kushi, K. Watanabe and H. Kuroya, Bull. Chem. Soc. Japan, 40, 2985 (1967).
- 3 L. F. Druding and F. D Sancilio, Acta Cryst., B30, 2386 (1974).
- 4 S. H. Caldwell and D. A. House, J. Inorg. Nucl. Chem., 31, 811 (1969).
- 5 F. R Keene and G. H. Searle, Inorg. Chem., 11, 146 (1972).
- 6 P. Wilairat and C. S. Garner, J. Inorg. Nucl. Chem., 32, 2293 (1970).
- 7 Tee Kim Huan, J. N. Mulvihill, A. R. Gainsford and D A. House, *Inorg. Chem.*, 12, 1517 (1973).
- 8 M. C. Couldwell and D. A. House, J. Inorg. Nucl. Chem., 33, 2583 (1971).
- 9 M. C. Couldwell and D. A. House, *Inorg. Chem.*, 13, 2949 (1974).

- 10 Abbreviations used: py = pyridinc, 3,5-lut = 3,5-dimethyl $pyridine, <math>B2NH_2 = benzylamine$, $cyclohexNH_2 = cyclo$ hexylamine, $cyclohexCH_2NH_2 = cyclohexanemethyl$ amine, $en = NH_2(CH_2)_2NH_2$, $pn = NH_2CH(CH_3)CH_2$ - NH_2 , $tmd = NH_2(CH_2)_3NH_2$, $dien = NH_2(CH_2)_2NH (CH_2)_2NH_2$, Metmd = $CH_3NH(CH_2)_3NH_2$.
- 11 R. G. Holloway, D. A. House and B. R. Penfold, Cryst. Struct. Commun., 7, 139 (1978).
- 12 A. R. Gainsford and D. A. House, Inorg. Chim. Acta, 3, 367 (1969); 5, 544 (1971).
- 13 B. F. Anderson, J. D. Bell, A. R. Gainsford and D. A. House, Inorg. Chim. Acta, 30, 59 (1978).
- 14 A. R. Gainsford and D. A. House, Inorg. Chim. Acta, 6, 227 (1972).
- 15 Lim Say Dong and D. A. House, Inorg. Chim. Acta, 19, 23 (1976).
- 16 P. H. Clayton and J. A. Mattern, J. Inorg. Nucl. Chem., 13, 248 (1960).
- 17 L. F. Vilas Boas, R D. Gillard and P. R. Mitchell, J. Chem. Soc. Dalton, 1215 (1977).
- 18 A. Dolance and P. W. Healy, Ind. and Eng. Chem., Anal. Ed., 17, 718 (1945).
- 19 A. J. Cunningham, D. A. House and H. K. J. Powell, J. Inorg. Nucl. Chem., 33, 572 (1971).

- 20 D. A House, unpublished research.
- 21 D. A House, Coord. Chem. Rev., 23, 223 (1977).
- 22 W. E. Jones, R. B. Jordan and T W. Swaddle, Inorg. Chem., 8, 2504 (1969).
- 23 J. N. Bronsted, Z. physik. chem., 122, 383 (1926). 24 J. Bjerrum and S. E. Rasmussen, Acta Chem. Scand., 6,
- 1265 (1952).
- 25 J. Y. Tong and P. E. Yankwich, J. Am. Chem. Soc., 80, 2664 (1958).
- 26 W. Kruze and H. Taube, J. Am. Chem. Soc., 83, 1280 (1961).
- 27 D F. Martin and M. L. Tobe, J. Chem. Soc., 1388 (1962).
- 28 M. L. Tobe, J. Chem. Soc., 3776 (1959).
- 29 F. Basolo and R. G Pearson, "Mechanisms of Inorganic Reactions", 2nd Ed., Wiley, N.Y., (1967), p. 274-283.
- 30 R. G. Pearson, J. Chem. Educ., 45, 581, 643 (1968).
- 31 This value is calculated from the atom coordinates of six Co(III) complexes with dien in the meridional configuration.
- 32 B. M. Oulaghan and D. A. House, Inorg. Chem., 00, 0000 (1978).
- 33 M. D. Alexander, Inorg. Chem., 5, 2084 (1966).
- 34 Lim Say Dong, A. R Gainsford and D. A. House, Inorg. Chim Acta, 30, 271 (1978).